

The duration expectancy	on of minimum green is nee y varies among practitioner	eded to satisfy driver s.	
duration ne	eded to satisfy driver expe	ctancy.	
Phase Type	Facility Type	Minimum Green Needed to Satisfy Driver Expectancy (Ge), s	
	Major Arterial (speed limit exceeds 40 mph)	10 to 15	
Through	Major Arterial (speed limit is 40 mph or less)	7 to 15	
	Minor Arterial	4 to 10	
	Collector, Local, Driveway	2 to 10	
Left Turn	Any	2 to 5	

Simulation result [*FHWA Traffic Signal Timing Manual*] suggests that delay was minimal when the minimum green interval was less than 4 seconds. Delay for the studied intersection increased slightly as the minimum green interval increased from 4 to 8 seconds.

Full-Actuated Signal Timing Design

• Initial interval

- The initial interval is equal to the minimum green minus a vehicle interval (e.g., 16.3 - 3.5 = 12.8 sec)

- ITE recommendation ((Actuated Detection Lo	cations)
------------------------	------------------------	----------

Approach Speed (mph)	Detector Setback (ft)	Number of Cars Stored	Initial Interval (sec)	Vehicle Interval (sec)	Minimum Assured Green (sec)
15	77	3-4	8.5	3.5	12.0
20	103	4-5	10.5	3.5	13.0
25	120	5-6	10.0	3.5	13.5
30	120	5-6	10.0	3.5	13.5

1) 35 or more: Basic actuated controller not appropriate; use multiple detectors (Section 8A) 2) For certain new design controllers, the minimum green equals the initial interval rather than the sum of the initial and vehicle intervals as shown

4. Maximum Green and Critical Cycle

- <u>Each actuated phase has a maximum green time</u> that limits the length of a green phase, even there are continued actuations that would normally retain the green. The maximum green time begins when there is a "call" (or detector actuation) on a competing phase
- The maximum amount of time that a green signal indication can be displayed in the presence of conflicting demand. <u>Maximum green is used to limit the delay to any other movement at the intersection and to keep the cycle length to a maximum amount</u>. It also guards against long green times due to continuous demand or broken detectors. <u>Ideally, the maximum green will not be reached because the detection system will find a gap to end the phase, but if there are continuous calls for service and a call on one or more conflicting phases, the maximum green parameter will eventually terminate the phase. A maximum green that is too long may result in wasted time at the intersection. If its value is too short, then the phase capacity may be inadequate for the traffic demand, and some vehicles will remain unserved at the end of the green interval.</u>

Maximum Green Time

setting: Max Out and Gap Out

- The method is the same as that used for determining cycle lengths and green times for a pre-timed signal
- The "critical cycle" for a full-actuated signal is one in which <u>each</u> <u>phase</u> reaches its maximum green time
- The "critical cycle" for a semi-actuated signal involves <u>the maximum</u> <u>green time for side street and the minimum green time for the major</u> <u>streets (which has no detectors)</u>

Phase	Facility Type	Maximum Green, s		
Through	Major Arterial (speed limit exceeds 40 mph)	50 to 70		
	Major Arterial (speed limit is 40 mph or less)	40 to 60		
	Minor Arterial	30 to 50		
	Collector, Local, Driveway	20 to 40		
Left Turn	Any	15 to 30		
1.Note: Range this type of det	is based on the assumption that advance detection is provided for in ection is not provided, then the typical maximum green range is 40	ndecision zone protection. If to 60 s.		

Maximum Green	Duration As a	Function	of Cycle
Length and Volun	ne		

	Cycle Length, s							
	50	60	70	80	90	100	110	120
Phase Volume per Lane, veh/hr/ln	Maximum Green (G _{max}) ¹ , s							
100	15	15	15	15	15	15	15	15
200	15	15	15	15	16	18	19	21
300	15	16	19	21	24	26	29	31
400	18	21	24	28	31	34	38	41
500	22	26	30	34	39	43	47	51
600	26	31	36	41	46	51	56	61
700	30	36	42	48	54	59	65	71
800	34	41	48	54	61	68	74	81

Full-Actuated Signal Timing Design CINC Example 1: A minimum green on an approach to an actuated signal is to be set as 6.0 s, with an assumed start-up lost time of 4.0 s. How far may the detector be located from the stop line? $G_{min} = l_1 + 2* \text{Int}(d/20) = 4 + 2 \text{Int}(d/20) = 6.0 \rightarrow \text{Int}(d/20) = 1.0 \rightarrow \text{the front of the}$ detector may be located anywhere between 0.1 and 20.0 ft from the stop line. Example 2: At an approach to an actuated signal location, a detector is to be placed such that the unit extension of 3.5 s is equal to the passage time. Initial lost time is 4 sec. The 15th percentile approach speed on this approach is 40 mph. Check detector setback and minimum green time. U ≥ P = $3.5 = d/(1.47*S_{15}) = d/(1.47*40) \rightarrow d = 3.5*1.47*40 = 205.8 \text{ ft} \rightarrow G_{min} =$ 4+2Int(205.8/20) = 26.0 secSuch setback is too long that leads to a very long minimum green time. So, variable minimum green is required (see the table for ITE recommendation for Actuated Detection Locations introduced earlier, use above modeling for speed \leq 30 mph)

Full-Actuated Signal Timing Design

 – ITE recommendation (Actuated Detection Locations) (same as that introduced earlier)

Approach Speed (mph)	Detector Setback (ft)	Number of Cars Stored	Initial Interval (sec)	Vehicle Interval (sec)	Minimum Assured Green (sec)
15	77	3-4	8.5	3.5	12.0
20	103	4-5	10.5	3.5	13.0
25	120	5-6	10.0	3.5	13.5
30	120	5-6	10.0	3.5	13.5

1) 35 or more: Basic actuated controller not appropriate; variable initial interval required (Section 8A)

2) For certain new design controllers, the minimum green equals the initial interval rather than the sum of the initial and vehicle intervals as shown

